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Abstract
A recently proposed thought experiment involving two differently polarized
boson gases (from two independent sources) coming together in a mixing
chamber is revisited from a broader point of view. Coherent mixing in the
chamber brings about a novel quantum statistical correlation. This correlation
stems from the near-indistinguishability of the bosons in spin space, and
manifests itself in the form of numerous microscopic quantum interferences
occurring together in a macroscopic scale. It also gives rise to ‘quantum
engagement’ of the two new spin eigenstates of the gas mixture. A parallel of
the quantum engagement with the well known quantum entanglement between
particles is brought out and explained.

1. Introduction

The Pauli exclusion principle gives rise to an effective two-body correlation that leads to
the famous Heisenberg exchange interaction [1] and is largely responsible for magnetism.
Similarly boson statistics harbors characteristic correlations that lead to, among other things,
the Bose–Einstein condensation (BEC) [2–4]. As was first pointed out by Dirac [5], the
correlations exhibited in both statistics owe their origins to the extrinsic indistinguishability
that results from spatially overlapping wavepackets of otherwise identical particles in quantum
mechanics. In fact, the various sizes and shapes of the wavepackets due to the overall confining
potential or potential pockets [6], or due to the finite lifetimes of the bosons themselves [7]
could play an important role in many situations.

In the following it will be shown that there exists a different type of correlation again
of purely quantum statistical origin. The difference is manifested in two counts. Firstly, it
only exists for bosons with nonvanishing overlap in spin space, i.e., the space of internal
states; hence it is ascribed to intrinsic indistinguishability [8, 11] rather than to extrinsic
indistinguishability. Secondly, it is a correlation akin to quantum entanglement that arises from
coherence [12–14]. This correlation was first alluded to recently in connection with BEC [8].
Upon probing into the deeper details we now find that this new correlation goes beyond BEC.
It is also a manifestation of microscopic quantum interference but multiplied many folds, i.e.,
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quantum interferences occurring en masse or together in a macroscopic scale. This is attributed
to the bosonic statistics of the atoms involved.

2. A simplified gedanken experiment and the tuning parameter for indistinguishability

In a previous work [8] we started by asking the question how the degree of indistinguishability
can be quantitatively defined and how it would affect quantum statistical thermodynamics
such as the Bose–Einstein condensation (BEC). An idealized thought experiment involving
a coherently mixed gas of bosons of two different polarizations was proposed. After an
analysis by the method of density matrix, two chemical potentials corresponding to two distinct
species in the mixed gas were found. They thus lead to two stages of BEC, each with its own
predicted condensation temperature Tc. However, in order to maintain the integrity of the spin
polarizations in spite of the spin–spin interactions a rather complex arrangement of several
Stern–Gerlach set-ups was employed. In the present work we aim at a deeper study of the new
quantum statistical correlation itself. To avoid unnecessary complications we are proposing a
new experimental arrangement which is conceptually simplified and hence easier to visualize,
with the integrity of the boson spins now taken for granted.

Consider a dilute gas of free bosonic atoms such as rubidium Rb87 in their ground
state [15, 16]. A beam of these atoms from source A is polarized in the spin state |F =
1,m F = 1〉 (abbreviated as |1, 1〉) by external means such as a uniform magnetic field along
the z-axis (or a suitable Stern–Gerlach set-up), and another beam of the same atoms but from a
different source B is polarized in |F = 1,m ′

F = 1〉 (abbreviated as |1, 1′〉) by another magnetic
field along the z ′-direction that is tilted at an angle θ with the z-axis in the xz-plane.

To relate |1, 1′〉 to |1, 1〉 some elementary angular momentum algebra is involved.
Exploiting the fact that an angular momentum or a spin state of F = 1 behaves like a spherical
tensor of rank 1 and hence like an ordinary vector, we start with the normalized state |α〉 defined
by

b|α〉 ≡ sin2 θ

2
|1,−1〉 + sin θ√

2
|1, 0〉 (1)

and obtain eventually (with a2 + b2 = 1)

|1, 1′〉 = a|1, 1〉 + b|α〉. (2)

With 〈1, 1|α〉 = 0, and 〈α|α〉 = 1, the amplitudes a and b are determined to be

a ≡ 〈1, 1′|1, 1〉 = cos2 θ

2
(3)

and

b =
√

sin2 θ

2

(
1 + cos2

θ

2

)
. (4)

We now send the two polarized beams from the independent sources A and B into a
common mixing chamber which is free of any external magnetic field. This arrangement is
much easier to visualize than the one in [8]. The integrity of all the unprimed and primed states
|F = 1,m F = 0,±1 or m ′

F = 0,±1〉 are assumed justifiable by referring back to our detailed
discussions for the previous arrangement [8–10].

When the tilting angle θ = 0, all the atoms in this chamber would be in the identical
internal state |1, 1〉 and hence indistinguishable intrinsically. When θ deviates from 0 the atoms
in |1, 1〉 would begin to differ from those in |1.1′〉 for 〈1, 1|1, 1′〉 = cos2 θ

2 = a � 0. This
overlap cos2 θ

2 of the two states in spin space thus parametrizes precisely the degree of intrinsic
indistinguishability [8]. For a given θ it is a number of known magnitude and phase. In this
sense we may say θ itself serves as a tuning parameter for the distinguishability.
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3. What happens in the mixing chamber?

For an atom in the uniformly mixed gas, the single-particle orbitals are of two kinds, namely,
|l〉 = |�k;1, 1〉 and |l ′〉 = |�k;1, 1′〉 where �k denotes the translational freedom of the atom. Being
from two independent sources each atom in the common chamber is in a mixed state. Exploiting
the independence of the single-particle orbitals of the free gas, we can treat one orbital at a time.
Furthermore, with the decoupling of the total atomic spin F from the translational freedom �k
we may factorize the orbital state into the translational part and the spin part, |l〉 = |�k〉|φspin〉.
Here

|φspin〉 = √
P1eiα|1, 1〉 +

√
P ′

1eiα′ |1, 1′〉 (5)

is not a pure state but rather a mixed state. It is the spin state of every single atom in the
uniformly mixed gas. P1 = N1

N1+N ′
1

and P ′
1 = N ′

1
N1+N ′

1
denote respectively the probabilities of

the occupation of the states |1, 1〉 and |1, 1′〉 for any given associated state |�k〉 provided, of
course, this |�k〉 is occupied, i.e., n�k,1 � 1, n�k,1′ � 1. Otherwise P1 and P ′

1 would lose their
meaning if n�k,1 = 0 or n�k,1′ = 0. N1 and N ′

1 are the number of atoms in the respective states
|1, 1〉 and |1, 1′〉 originally from the independent sources A and B. Hence the relative phase
α–α′ is random in equation (5), guaranteeing 〈φspin|φspin〉av = 1. It is important to note that
equation (5) is valid only after the gases have been thoroughly and uniformly mixed so that the
probabilities P1 and P ′

1 in the single-particle state equation (5) make physical sense.
To investigate the statistical properties of the mixed gas the proper and the most convenient

way is to employ the density matrix.

4. Treatment by density matrix

Let ρl be the density matrix for the orbital l which can correspondingly be factorized into
ρl = ρspinρ�k . Here ρ�k describes only the translational motion, and ρspin is given by

ρspin = {|φspin〉〈φspin|}av = P1|1, 1〉〈1, 1| + P ′
1|1, 1′〉〈1, 1′| (6)

after averaging over the random phases of (α–α′).
In the orthonormal basis of |1, 1〉 and |α〉 of equation (2) the above ρspin becomes

ρspin = ρ0 + ρcoh (7)

where

ρ0 =
(

P1 + P ′
1|a|2 0

0 P ′
1|b|2

)
(8)

and

ρcoh =
(

0 P ′
1b∗a

P ′
1ba∗ 0

)
. (9)

If |1, 1′〉 of equation (2) were not a pure state but rather a mixed state with random phase
relation between the amplitudes a in |1, 1〉 and b in |α〉, the two off-diagonal matrix elements
in equation (9) would each become zero upon phase averaging. Thus ρcoh is originated purely
from coherence. In passing we should mention that while we have purposely made equation (9)
formally identical to a corresponding equation in [8], the physical content of all the matrix
elements are rather different; they refer to a different set of basis states and pertain to two
different experiments.

It is now straightforward to diagonalize the above ρspin by

|ψ±〉 = A±|1, 1〉 + B±|α〉 (10)
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whose eigenvalues are denoted by P±. We find

P± = 1
2

[
1 ±

√
1 − 4P1 P ′

1|b|2
]

(11)

and the coefficients A± and B± are given by

P± − P1 − P ′
1|a|2

P ′
1ab∗ = B±

A±
= P ′

1a∗b

P± − P ′
1|b|2 (12)

where a and b are given by equations (3), (4).
With 〈ψ±|ψ±〉 = 1 and 〈ψ+|ψ−〉 = 0 the above |ψ+〉 and |ψ−〉 constitute a new set of

orthonormal single-particle states. Together with the associated probabilities P+ and P− they
are to be used to calculate the corresponding chemical potentials and condensation temperatures
μ+, T+ and μ−, T− [8], as well as the value of any physical single-particle observable ϑ
according to 〈ϑ〉 = P+〈ψ+|ϑ|ψ+〉 + P−〈ψ−|ϑ|ψ−〉. Once the atoms get mixed uniformly
inside the mixing chamber, ρcoh of equation (9) becomes operative and this new set of |ψ±〉
states will take over the old set of |F = 1,m F = 0,±1 or m ′

F = 0,±1〉 for any affair of the
noninteracting atoms in that chamber. The old set has simply become obsolete.

In the limit of θ 	 π
2 , we find

P+ 
 1 − 9

16
P1 P ′

1θ
2,

B+
A+


 3

4
P ′

1θ; (13)

and

P− 
 9

16
P1 P ′

1θ
2,

B−
A−


 − 4

3P ′
1θ
. (14)

We may generalize to the case of M � 2 beams of bosons coming into the mixing chamber.
For example, instead of equation (6) we may have

ρspin = P1|1, 1〉〈1, 1| + P ′
1|1, 1′〉〈1, 1′| + P ′′

1 |1, 1′′〉〈1, 1′′| + · · · . (15)

It can be diagonalized as before by a corresponding set of two eigenstates with eigenvalues

P± = 1
2 {1 ±

√
1 − 4

∑M
i< j Pi Pj |ai b j − a j bi |2} which can be easily verified for the case of

M = 3.
Back to our case of M = 2: we first observe that, with P1 = N1

N1+N ′
1
, P ′

1 = N ′
1

N1+N ′
1
, it is

only the ratio of the two populations N ′
1

N1
rather than the individual N1 and N ′

1 that enters the
constitution of the new states |ψ±〉 of equations (10) and (12) as well as their associated P±
of equation (11). This is highly significant. It means that they would remain unchanged when
we lower the two densities n1 = N1

V and n′
1 = N ′

1
V , as long as their ratio is kept fixed. While

the corresponding lowered densities n± = P±(n1 + n′
1) would affect the respective chemical

potentials μ± and hence depress the critical temperatures T± of the two distinct species of
bosons [8], their states |ψ±〉 would remain intact. As a bonus, the lowered densities not only
help reduce the inter-particle interactions but also lessen the requirement for low temperatures,
for wavepacket overlaps are no longer essential as far as the observable effects of |ψ±〉 are
concerned.

Now that BEC is not our main concern we could decrease the densities such that the
wavepackets enveloping the atoms in general have little overlap with one another. The
more familiar quantum statistical correlation caused by the previously discussed extrinsic
indistinguishability [5] would then be lost. Yet there remains a seemingly mysterious
correlation between the states |ψ+〉 and |ψ−〉.
4
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5. Quantum engagement, a new type of quantum statistical correlation

Suppose we have N widely separated, noninteracting hydrogen atoms, some of them, say, N1

in |1s〉, some others, say N2 in |2p0〉. Under ordinary circumstances their atomic states would
not be altered into some other states like |2p1〉, |3d−2〉, . . . or some linear combinations thereof
when a few more of the same original kinds, say 	N1 and 	N2, are introduced into their
neighborhood. This does not seem to be the case when the atoms are in our |ψ+〉 and |ψ−〉.

In the well known example of quantum entanglement [14], a molecule containing two spin
1
2 -atoms in a singlet spin state of S = 0 is disintegrated. Yet, even when the two atoms have
gone far apart in opposite directions from each other the two atomic spins remain correlated:
when one of them is measured to be in |↑〉 along a certain γ -direction, the measurement of
the other spin far away will always yield |↓〉 with respect to that same γ -direction, regardless
of how we manipulate or tinker with this γ -direction. It is thus said that the two atomic spins
are entangled [12–14], despite the absence of interaction between the two separated atoms.
In our present case, the atomic state |φspin〉 of equation (5) in the two differently polarized
gases before mixing coherently as they are just entering the mixing chamber can be likened
to the entangled S = 0 state of the molecule before disintegration. No special correlation is
identifiable yet. Once well settled inside that chamber, coherent interference occur and the
new set of |ψ±〉 states takes over, much like the two atomic spin states of the disintegrated
molecule. A correlation akin to entanglement manifests itself in the following way. When
one of the eigenstates |ψ+〉 within the chamber is varied, say, by changing n1 and hence P1,
(keeping in mind that P ′

1 = 1 − P1) the other state |ψ−〉 within the chamber will be induced
to change according to equation (12), and vice versa. The varying of |ψ+〉 by tinkering with n1

can be likened to the act of measuring one of the two widely separated atomic spins as we tinker
with the direction γ . An entanglement-like act ensues as the other member |ψ−〉 that can be
likened to the other atomic spin in molecular disintegration is induced to change accordingly.

Yet there is more to it. For there may already be n+ atoms in |ψ+〉 and n− of them in
|ψ−〉. Once n1, say, is changed by 	n1, not just one but every atom originally in |ψ+〉 and
in |ψ−〉 will suffer the same change of state, 	|ψ+〉 or 	|ψ−〉. This is, therefore, a new type
of correlation not encountered before. We shall call this correlation by the name of ‘quantum
engagement’; it is between the |ψ+〉 and |ψ−〉 states themselves rather than between a certain
pair of atoms which happens to be in them. It depends crucially not only on the intrinsic
indistinguishability [8] but also on the variability of the parameter n1/n′

1 through which this
engagement makes its appearance. Therefore, it is fundamentally quantum statistical in nature.
In contrast, quantum entanglement, for example, in the example of molecular disintegration,
is a purely quantum mechanical correlation between the two atom spins in the product of the
disintegration. These two atoms do not even have to be of the same kind. Changing the number
of other similar molecules in its neighborhood would not affect the outcome of entanglement
manifested by our disintegrated molecule at hand.

In view of the existence of quantum engagement even in the absence of any overlap
between the spatial wavepackets we ask whether it could persist into the realm of classical
physics. The answer is a resounding no by examining |1, 1′〉 of equation (2). The fact that it
is a pure state composed of a linear superposition of two components, |1, 1〉 and |α〉, embodies
the quintessence of quantum mechanics.

It might seem that the physical implications of equations (10)–(12) could carry over to
fermions, for the role of statistics in just these equations themselves is not so transparent. That
this is not true is reflected in the allowed values of P1 and P ′

1. We recall that the internal
state |φspin〉 of equation (5) for an atom in the mixing chamber is to be associated with every
translational state |�k〉. Such a spin state makes sense, for any given �k, only when there are one

5
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or more such �k-atoms from source A and also from source B . Otherwise there could be some �k-
atoms in |1, 1〉 dangling around without the company of some �k-atoms in |1, 1′〉. For fermions
the only meaningful choice of occupation numbers is thus n�k1 = 1, n�k1′ = 1 or, equivalently,
P1 = P ′

1 = 1
2 . Consequently these two fixed probabilities P1 and P ′

1 cannot serve as variables
to change |ψ±〉 and hence there is no quantum engagement for the case of free fermions.

6. Physical understanding of quantum engagement

To aid our physical understanding of the seemingly mysterious correlation we would like to
link it to some other experiences that we are already well acquainted with. Let us return to
equations (7)–(9). We reiterate that ρcoh owes its existence entirely to the coherence of the
phase relation between the amplitudes a and b of the components |1, 1〉 and |α〉 in the state
|1, 1′〉 of equation (2). Bringing on this coherence turns the unperturbed eigenstates states |1, 1〉
and |α〉 of ρ0 into the new pair of perturbed eigenstates |ψ±〉 of the full ρspin. Hence each new
pair can be viewed as the offspring of the coherent interference between the two unperturbed
states. It is now instructive to compare with an analogous classical case of sound waves in a
closed tube. Here the forward and the reflected sound waves in the closed tube are analogous
to the unperturbed basis states |1, 1〉 and |α〉. Each wave consists of the orderly vibrations
superimposed on the random thermal motions of a macroscopic number of air molecules.
However, if they were not allowed to interfere coherently, each wave would continue to exist
without the influence of the other. Only the coherent interference of the two running waves
within the closed tube results in the standing wave patterns (the eigenmodes). Similarly, if
the two beams of bosons were not allowed to enter and mix in the common chamber, the two
unperturbed states |1, 1〉 and |α〉 would stay on forever. Only through their thorough mixing
within the common chamber in a coherent manner would the new states |ψ±〉 emerge; they are
the analogues of the standing waves in the closed tube. No dynamical interactions among the
particles are involved in either case.

7. Microscopic quantum interferences en masse

Since every momentum state |�k〉 is associated with the same internal state |ψ+〉 or |ψ 〉, once
the atoms from sources A and B are well settled in the mixing chamber macroscopically large
numbers N P± of them in various momenta would fall en masse into the same set of internal
single-particle states |ψ±〉, respectively. Analogously to the classical case, these are all a result
of pure coherent interference without any dynamic interactions, except that they are of quantum
origin this time. The distribution in the various momentum states |�k〉 depends as usual on
temperature. Atomic thermal motions are thus present in both the classical and the quantal
cases. But, upon averaging, these random motions do not affect the coherent, macroscopic
outcome of the standing wave patterns in the former, nor that of the two macroscopic sets
of magnetic moments (N P+)µ+ and (N P−)µ− in the latter, µ± being the atomic magnetic
moments in |ψ±〉, respectively. Having established the analogy between the quantal and
the classical cases we rephrase that, while (P+, |ψ+〉) and (P−, |ψ 〉) are the result of the
microscopic quantum interference of the two states |1, 1〉 and |α〉 in spin space that pertains
to one single particle, the fact that every particle in the mixing chamber, regardless of its
momentum, is at the receiving end of the same microscopic quantum interference effectively
multiplies the microscopic result by N folds. This can thus be said to be a macroscopic number
of quantum interferences occurring en masse, or together in a grand scale.

In comparison, the more familiar case of Josephson tunneling in the superconductivity
version (or the Bose condensate version [17]) involves just a quantum interference with a

6
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definite phase difference between two macroscopic condensates of Cooper pairs (boson-like)
on the two sides of a spatial junction, rather than a microscopic interference multiplied by N-
fold. In other words, it is a macroscopic quantum interference in physical space rather than a
multiple of simultaneous microscopic interferences in spin space. Furthermore, the Josephson
tunneling is driven by a perturbative, dynamical tunneling Hamiltonian.

8. Experimental observation

Aside from the observation of the two stages of Bose–Einstein condensation into the |ψ+〉 state
and the |ψ−〉 state, respectively [8], a measurement, for example, of the average dipole moment
μ̂z in the mixed gas predicted to be

〈Nμ̂z 〉 = N+〈ψ+|μ̂z|ψ+〉 + N−〈ψ−|μ̂z|ψ−〉 (16)

would shed light on this case of microscopic quantum interferences en masse, while varying
the ratio of N1

N ′
1

would illustrate the quantum engagement property of the |ψ+〉 and |ψ−〉 states.

9. Summary and conclusion

While the overlap of spatial wavefunctions or the extrinsic indistinguishability is known to
bring about quantum statistical correlations in physical space, as manifested in Heisenberg
exchange interaction and the BEC, the intrinsic indistinguishability together with the variability
of boson populations (a signature of bosons) in the present case is shown to bring about a novel
quantum statistical correlation in spin space. We call it ‘quantum engagement’ because of a
parallel with the well known quantum entanglement. The effects of such quantum engagements
and the microscopic quantum interferences occurring en masse can be seen in a coherently
mixed Bose gas consisting of two kinds of atoms in different polarization states. Both the angle
θ between the polarizations and the ratio of the populations of the two kinds of atoms serve as
controlling parameters. It is not any dynamic potential but rather the coherent interferences in
terms of these two parameters that bring about the novel quantum statistical correlation.
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